Ensuring Innovation for the Future of Patient Care
For fifty years, the Dermatology Foundation has provided research support that is essential to advancing patient care. DF funding enables the specialty’s newest minds to confidently begin productive careers in investigative dermatology, enabling them to progress and vie successfully for federal grants. Each recipient has the potential and desire to make significant contributions to the specialty in their unique area of focus. Together, they have tremendous capacity to further the scientific foundation of dermatology.
The DF has a critical role in the ongoing advancement of dermatology. It is the only private source of funding for new physician scientists and investigators in the specialty, and is second only to the NIH in cultivating and supporting research careers in dermatology. Through the generous support of its physician members, corporate supporters and society partners, the Foundation was able to award a variety of research awards totaling nearly $3.5 million to 69 deserving individuals in 2014.

The Dermatology Foundation’s Board of Trustees is pleased to present this year’s research award recipients. Each Trustee takes pride in supporting these individuals and looks forward to watching them advance and contribute to the field of dermatology.

Charles & Daneen Stiefel Scholar Award in Autoimmune &/or Connective Tissue Diseases

Introduced for the 2014 funding year, the Stiefel Award supports an outstanding early to mid-career investigator with an established trajectory of excellence in basic, translational and/or clinical science.

The first of its kind, the Stiefel award provides $100,000 in annual support for up to three years and may be used for any combination of salary and project expenses.

Made possible by a $1 million gift from Charles and Daneen Stiefel, this award is designed to support investigators committed to elucidate the basis, pathophysiology, clinical manifestations, and/or treatment of autoimmune and/or connective tissue diseases affecting adults and/or children.

John E. Harris, M.D., Ph.D.
University of Massachusetts
Skin-Resident Memory T Cells in Vitiligo

Vitiligo is an autoimmune skin disease characterized by disfiguring white spots that may improve with treatment, but quickly return when treatment is stopped. Therefore, these spots are persistent and treatments must be continued for life. The reason why these spots persist and are so resistant to treatment is unknown. We hypothesize that self-reactive immune cells become stuck in the skin during vitiligo and maintain the white spots and resist treatment. Therefore, removing these cells will result in a short-term treatment that has long-lasting effects, providing an exciting new option for these patients who are devastated by this disfiguring disease.
Career Development Awards

The DF provides a variety of career development awards (CDAs) to individuals who demonstrate exceptional potential. CDAs are the Foundation’s most sought-after awards, providing $55,000 in annual salary support for up to three years. These funding mechanisms allow recipients to focus on an array of research topics and studies that enable them to develop the experience and preliminary data needed to compete successfully for federal funding.

Clinical Career Development Award in Health Care Policy/Public Health

Anokhi Jambusaria-Pahlajani, M.D., M.S.C.E.

Mayo Clinic in Florida

Validation of SCC Staging Systems and Development of a Prediction Tool to Estimate Recurrence Risk

This proposal intends to clarify the prognosis of high-risk squamous cell carcinoma (SCC). We will collect information on all SCCs diagnosed over a 5-year period at the Mayo Clinic and utilize this data to evaluate current staging systems. Then we will merge our dataset with other SCC databases and analyze the data to develop a prediction tool that will accurately estimate 1-year, 3-year, and 5-year risks of recurrence.

Clinical Career Development Award in Dermatologic Surgery

Christine A. Liang, M.D.

Harvard University

Mohs Surgery for Melanoma In Situ: Optimization and Outcomes

Although Mohs surgery for melanoma enables complete margin assessment in a single day, it is controversial due to the difficulty in interpreting frozen sections. Staged excisions, although highly accurate, take several days to complete. This study will determine: 1) the difference in margin evaluation between Mohs and staged excision, 2) the optimal immunostain for frozen margin assessment, 3) the margin needed for tumor clearance, and 4) outcomes after Mohs treatment.

Margaret W. Mann, M.D.

Case Western Reserve University

Refining Dermatologic Surgical Training in Residency

All physicians must undergo lengthy training before they are licensed to practice medicine. This includes a rigorous residency, which is often considered “on the job” training after medical school. Residents must be trained properly to ensure patient safety and the highest quality of care, as their graduation signifies their ability to practice independently. This project will contribute to strengthening residency education by creating tools to help teach basic surgical skills to residents. This will ensure that the residents of today are well qualified to become the physicians of tomorrow.

Physician Scientist Career Development Award

Yaohui Gloria Xu, M.D., Ph.D.

University of Wisconsin

Archilles’ Heel in Melanoma - CDR-BP as a Potential Prognostic Marker and Therapeutic Target

Our preliminary results have suggested that coding region determinant binding protein (CRD-BP) is critical in promoting melanoma progression. This makes it a promising candidate for accurately predicting the outcome of early-stage melanomas and effectively treating advanced melanomas. We hypothesize that over-activated CRD-BP may correlate with melanoma aggressiveness and thus that the inhibition of this molecule may suppress melanoma growth.
Shadmehr Demehri, M.D., Ph.D.
Washington University
The Mechanism of NK Cell Activation and Its Implications in Skin Cancer Immunotherapy

The goal of this proposal is to investigate the use of Natural Killer (NK) cells in skin cancer treatment. They are a group of immune cells that can kill cancer cells. I will study the combination of signals that are required to properly activate NK cells against skin cancer. The outcome of these studies will help develop an effective immunotherapy against skin cancer.

Peggy S. Myung, M.D., Ph.D.
Yale University School of Medicine
The Role of Non-cell Autonomous Wnt Activation in Hair Follicle Growth and Basal Cell Carcinoma

Understanding how stem cells promote tissue regeneration is key to developing targeted therapies to treat human diseases that lead to either tissue damage or cancer. This proposal uses innovative technology to examine how a key stem cell activator can recruit a population of cells to undergo collective growth during regeneration and how this mechanism can also be utilized aberrantly to promote cooperative growth during carcinogenesis.

Eon J. Rios, M.D., Ph.D.
Stanford University
Non-Coding RNAs in Epidermal Homeostasis and Neoplasia

Cutaneous squamous cell carcinomas (cSCCs) remain a common and potentially fatal condition that dermatologists have to manage. Using next-generation sequencing technologies, we have identified a number of novel RNAs that are aberrantly expressed in cSCCs. Now we will study the role of these RNAs in both epidermal homeostasis and carcinogenesis.

Iwei Yeh, M.D., Ph.D.
University of California, San Francisco
Activating B-catenin Mutations Cooperate with BRAFV600E to Promote Invasion

Melanomas contain “driver” mutations in their DNA that provide a growth signal to the melanocyte. However, additional mutations must occur to override safety systems that otherwise engage to prevent continued growth. We identified 13-catenin mutations that override parts of the safety system in melanocytes. We are studying the mechanisms of this 13-catenin override in the hope that we identify mechanisms of stopping melanoma growth.

Kavita Y. Sarin, M.D., Ph.D.
Stanford University
Genetic Markers of Therapy Resistance in Advanced Basal Cell Carcinoma

Recently, vismodegib, a small-molecule inhibitor of the hedgehog pathway, was approved as the first targeted therapy in basal cell carcinoma (BCC). However, a significant number of BCCs either fail to respond or acquire resistance to vismodegib. This proposal aims to identify the genetic mutations underlying drug resistance to vismodegib in BCCs, and to develop a diagnostic tool to predict resistance prior to therapy.

Marie S. Tuttle, M.D.
Case Western Reserve University
The Role of Iron in the Perpetuation of Inflammation and Infection in Chronic Wounds

Chronic wounds are a common problem, particularly in the elderly, as they lead to increased hospitalizations, morbidity, and mortality. We propose a novel study design to ethically compare normal vs. delayed healing in elderly patients that will enable us to develop a mechanistic understanding of the origins of delayed healing, specifically in terms of alterations in inflammation and the microbial communities in the wound and surrounding skin.
Dermatopathology Research Career Development Award

Emily Y. Chu, M.D., Ph.D.
University of Pennsylvania
Identification of Molecular Prognostic Markers for Thin Melanomas

All physicians undergo lengthy training before they are licensed to practice medicine. This includes a rigorous residency after medical school, often considered “on the job” training, to ensure patient safety and the highest quality of care when they practice independently. This project will assist residency education by creating tools to help teach basic surgical skills. This will ensure that today’s residents are well qualified to become the physicians of tomorrow.

Philip O. Scumpia, M.D., Ph.D.
University of California, Los Angeles
Regulation of Macrophage Inflammatory Networks by Neutral Stress Pathways in Skin Disease

Physiologic stress has a detrimental effect on skin immunity, potentially through the effects of specific stress molecules. Little is known about how global gene networks elicited by these stress molecules regulate inflammatory responses in human skin. We will investigate how these gene networks intersect with specific innate immune inflammatory pathways and then translate these results to human leprosy by studying skin samples from patients. Our ultimate goal is relevant therapeutics.

Women’s Health Career Development Award

Megha M. Tollefson, M.D.
Mayo Clinic in Minnesota
Quality of Life of Parents and Caregivers of Children with Psoriasis

Psoriasis is a skin disease that often lasts a lifetime and can be very difficult to care for. Adults with psoriasis say their psoriasis negatively affects their lives, but not much is known about how a child’s psoriasis affects his or her parents or caregivers. In this study, we will determine the impact that a child’s psoriasis has on his or her parents.

Pediatric Dermatology Career Development Award

Yvonne E. Chiu, M.D.
Medical College of Wisconsin
Clinical and Genetic Investigations of Pediatric Morphea

We will create a national clinical registry and DNA biobank of pediatric morphea to define the natural history of pediatric-onset morphea and identify genes and pathways involved in its development. Longitudinal disease activity will be assessed, and DNA will be extracted from blood and affected skin. Whole exome sequencing will be performed to identify candidate genes, with eventual confirmation in a validation cohort.

Jennifer T. Huang, M.D.
Harvard University
Late Skin Effects in Children after Hematopoietic Stem Cell Transplant

Late effects of hematopoietic stem cell transplantation (HSCT) on the skin are not well studied in children. The goal of this study is to investigate the presence of skin cancer, moles, vitiligo, nail changes, and hair changes in children, with interval skin examinations pre-transplant until 3 years after HSCT. Education and behavioral assessments regarding sun protection and sun avoidance will also be performed.

Research Career Development Award

Javed A. Mohammed, Ph.D.
University of Minnesota
Keratinocytes Control Langerhans Cell Migration by Spatial Expression of RGD-binding Integrins

Langerhans cell (LC) is a type of skin-resident immune cell and a key component of the immune system involved in identifying and combatting foreign pathogens. Our goal is to elucidate a novel keratinocyte-controlled pathway of regulation of LC function in normal and inflamed skin. This pathway can be targeted for potential therapeutic interventions in the large number of immunologically-based cutaneous disorders.
Han Peng, Ph.D.
Northwestern University
Regulation of the Cell Cycle by MicroRNAs: Quiescence versus Proliferation

Abnormal cell proliferation is a key characteristic in many diseases, including chronic skin ulcer, psoriasis and squamous cell carcinoma. To better understand the regulation of proliferation, we propose to elucidate functions of a microRNA family on regulating the cell cycle. Thus, knowledge from this study could have potential utility in diseases with abnormal cell kinetics.

Poulikos I. Poulikakos, Ph.D.
Mount Sinai Medical Center
Understanding RAF Regulation to Develop Novel Strategies for Targeting RAF Signaling in Melanoma

The oncoprotein BRAF is mutated in approximately 50% of melanomas. RAF inhibitors have shown remarkable responses in melanoma patients, but their efficacy is limited by development of resistance. Sensitivity and resistance to these drugs is related to the unique biochemical properties of RAF. This proposal aims to understand RAF regulation and function, and then to use this knowledge to design more effective therapeutic strategies in melanoma.

Career Development Award Renewals

To receive a second and third year of funding, CDA recipients must provide evidence of substantial progress on their research project and continued productivity in their academic and research career.

Clinical Career Development Award in Health Care Policy/Public Health

Joslyn S. Kirby, M.D. – Year 2
Pennsylvania State University
Pharmacoeconomic Analysis of Current and Alternative Reimbursement Models for Actinic Keratoses

Eleni Linos, M.D. – Year 3
University of California, San Francisco
Non-Melanoma Skin Cancer Care in Elderly Patients with Limited Life Expectancy

Junko Takeshita, M.D., Ph.D. – Year 2
University of Pennsylvania
The Risk of Serious Infection in Patients with Psoriasis

Clinical Career Development Award in Dermatologic Surgery

Sean R. Christensen, M.D., Ph.D. – Year 2
Yale University
Identifying Novel Regulators of Ultraviolet-Induced Apoptosis in Human Squamous Cell Carcinoma

Marcus L. Frohm, M.D. – Year 2
University of Michigan
Pharmacological Treatment of BCC: How Much Do We Really Know?

Physician Scientist Career Development Award

Christopher G. Bunick, M.D., Ph.D. – Year 2
Yale University
Determining Structure and Function of the N-terminus of Human Keratins Using X-ray Crystallography

Donna A. Culton, M.D., Ph.D. – Year 2
University of North Carolina, Chapel Hill
The Role of Circulating Antigen Experienced B Cells in Pemphigus: Lessons from Rituximab

Sarina B. Elmariah, M.D., Ph.D. – Year 3
Harvard University
The Role of Proteases and Neurogenic Inflammation in the Pathogenesis of Atopic Dermatitis

Donald A. Glass, II, M.D., Ph.D. – Year 2
University of Texas Southwestern Medical Center
Determining the Genetic Causes of Keloid Formation

Michael D. Gober, M.D., Ph.D. – Year 2
University of Pennsylvania
The Effect of Voriconazole in Promoting UV-induced cSCC

Ali Jabbari, M.D., Ph.D. – Year 3
Columbia University
Biomarker Development in Discoid Lupus

Thomas H. Leung, M.D. – Year 3
Stanford University
Understanding Tissue Regeneration in Mouse and Human Epithelial Cells

Tiffany C. Scharschmidt, M.D. – Year 2
University of California, San Francisco
Identifying Key Genetic Determinants of Staphylococcus Aureus Skin Colonization
Matthew J. Turner, M.D. – Year 3
Indiana University
Inductive Keratinocyte-Derived Cytokines in a Murine Model of Atopic Dermatitis

Lisa C. Zaba, M.D., Ph.D. – Year 2
Stanford University
Long Noncoding RNAs in Skin Fibrosis and Scleroderma Pathogenesis

Science of Human Appearance Career Development Award

Sivan Harel, Ph.D. – Year 2
Columbia University
The Role of Hair Follicle Immune System in Age-Dependent Hair Loss

Phillip D. Holler, M.D., Ph.D. – Year 2
University of Pennsylvania
Molecular Characterization of Hair Follicle Neogenesis

Frank Wang, M.D. – Year 3
University of Michigan
Reversal of Aged Skin Appearance by Enhancing Structural Support with Cross-Linked Hyaluronic Acid

Mingang Xu, Ph.D. – Year 3
University of Pennsylvania
The Roles of Wnt10a and Pkp1 in Skin and Hair Follicle Development and Renewal

Medical Dermatology Career Development Award

Adela Rambi G. Cardones, M.D. – Year 3
Duke University
Quantitative Assessment of Disease Severity in Chronic Cutaneous Graft-vs-Host Disease

Ron J. Feldman, M.D., Ph.D. – Year 2
Emory University
Phenotypic and Functional Analysis of B Cells in Patients with Autoimmune Blistering Diseases

Meg R. Gerstenblith, M.D. – Year 3
Case Western Reserve University
Identifying Clinically Relevant Subtypes of Melanoma Using Genomic Profiling

Anna K. Haemel, M.D. – Year 3
University of California, San Francisco
A Comprehensive Approach to Study Systemic Scleroderma at the Molecular and Cellular Level

Stefan M. Schieke, M.D. – Year 2
Medical College of Wisconsin
mTOR Inhibitors in Cutaneous T-Cell Lymphoma: Therapeutic Efficacy and Molecular Mechanisms

Ruth Ann Vleugels, M.D. – Year 3
Harvard University
Cutaneous Lupus Erythematosus: Developing a Novel Assessment Tool and Investigating Disease Associations

Dermatopathology Research Career Development Award

Paul W. Harms, M.D., Ph.D. – Year 2
University of Michigan
Mutational Landscape of Merkel Cell Carcinoma by Next Generation Sequencing

Basil A. Horst, M.D. – Year 3
Columbia University
Analysis of Inositol Polyphosphatase 4-Phosphatase Type II in Melanocytic Lesions

Janis Marie Taube, M.D. – Year 2
Johns Hopkins Medical Institutions
PD-1/PD-L1 Immune Checkpoint Blockade in Melanoma

Women’s Health Career Development Award

Beth N. McLellan, M.D. – Year 2
Albert Einstein College of Medicine
Characteristics of Alopecia in Breast Cancer Patients Treated with Hormonal Therapy

Bethanee J. Schlosser, M.D., Ph.D. – Year 3
Northwestern University
Clinical and Molecular Characterization of Lichen Sclerosus as a Model of Vulvar Epithelial Fibrosis

Research Career Development Award

Yeon Sook Choi, Ph.D. – Year 2
University of Pennsylvania
WNT Signals in Merkel Cell Development and Regeneration

Anna De Benedetto, M.D. – Year 2
University of Rochester
Tight Junction Defects in Atopic Dermatitis: Crossroads between Barrier and Immune Response

Annemieke de Jong, Ph.D. – Year 3
Columbia University
Functional and Phenotypic Analysis of Pathogenic T Cells in Alopecia Areata

Jodi L. Johnson, Ph.D. – Year 3
Northwestern University
Role of Cell Anchoring Desmosomal Proteins in the Epidermal Responses to UV Exposure

Masaoki Kawasumi, M.D., Ph.D. – Year 2
University of Washington
Chemical Genetic Dissection of the UV DNA Damage Response and Carcinogenesis

Enrique C. Torchia, Ph.D. – Year 3
University of Colorado, Denver
Molecular Mechanisms of Aurora Kinase A Mediated Carcinogenesis
Fellowships

DF fellowships provide a one-year salary stipend of $30,000 to $45,000 to individuals who have recently completed their residency, and are embarking on an academic and research career path.

Dermatologist Investigator Research Fellowship

Katrina E. Abuabara, M.D., M.A.
University of Pennsylvania
The Natural History of Eczema in Children and Young Adults

Eczema is a disease causing inflamed itchy skin. Most patients develop it in childhood. The severity of symptoms can wax and wane over time, but little is known about how much time patients spend with good disease control versus poor disease control. This study will determine how often patients with eczema have good disease control during their childhood and teenage years, and whether this improves as they get older.

Katherine O. Ayoade, M.D., Ph.D.
University of Texas Southwestern Medical Center
The Role of DAF-12 in the Parasitism of Nippostrongylus Brasiliensis

Parasite infections in humans characteristically produce cutaneous lesions and systemic diseases. Nematodes are the most common human parasites. The DAF-12 receptor in nematodes is an evolutionarily conserved nuclear hormone receptor that governs the organism’s life cycle and reproduction. The goal of this project is to understand how infectious nematodes use this receptor to establish an infection in the host. Understanding this mechanism may identify new therapeutic agents.

Samuel J. Balin, M.D., Ph.D.
University of California, Los Angeles
B Cells in Leprosy

B cells play a central role in the immune response to pathogens, but their role in shaping immunity within human skin is not well understood. We seek to gain insight into this by studying leprosy, as B cells have been found in leprosy lesions but their role is unclear. We hypothesize that B cells or their products influence the outcome of the host response to the bacteria that causes leprosy.

John T. O’Malley, M.D., Ph.D.
Columbia University
Using Next Generation Sequencing to Examine T-cell Receptor Diversity in Mycosis Fungoides

Identifying the clonal T-cell population in Cutaneous T-cell Lymphoma (CTCL), a rare lymphoma, has diagnostic and prognostic importance. Current techniques to identify the clone are limited. Using a technique that can identify T cells with greater precision and depth, we aim to identify the global “landscape” of clonal populations of T cells and their significance in CTCL.

Jubin W. Ryu, M.D., Ph.D.
University of California, San Francisco
Creating Nanotopography for Transdermal Drug Delivery and Treatment of Fibrotic Disorders

Our skin is the critical boundary between the external world and our internal organs, a stringent barrier to external substances. When this tight barrier is broken, it repairs itself by producing a scar. However, the tight barrier prevents therapeutic medications from delivery through the skin, and some scars become excessive and debilitating. Unwanted fibrosis also occurs in multiple cutaneous diseases. We are exploring novel nanostructured films to influence these behaviors.

Amanda E. Zubek, M.D., Ph.D.
Yale University
Elucidation of SUN Protein Function in Epidermal Development

My research uses genetic and cell biological techniques to understand how structural proteins regulate hair and skin development. SUN proteins are found on the inner membrane of the cell nucleus, and help connect the cytoskeleton to the nucleus. Understanding how SUN proteins communicate with cell adhesion complexes will provide important insight into the mechanics of normal skin function as well as skin disease and aging.

Fellowship in Pediatric Dermatology

Jennifer L. Sorrell, M.D.
Columbia University
Alopecia Areata, Atopic Dermatitis and Autoimmune Associations (A-Five Study)

Alopecia areata is a common disorder resulting from autoimmunity to the hair follicle. It has a variable spectrum, and can be progressive and associated with other diseases. We aim to develop a pediatric-specific questionnaire to assess for other genetically related conditions and define clinical characteristics in children and their families with alopecia areata. We will also genetically assess and evaluate patients with severe disease.
Grants

Dermatology Foundation research grants provide $20,000 to support the non-salary elements of a research project. Each year, a variety of grants are funded to assist basic science research and medical and surgical studies that benefit the dermatology community.

Dermatopathology Research Grant

Jochen T. Schaefer, M.D.
University of Connecticut
Genomic Analysis of Cellular Dermatofibromas and Cystic Fibrohistiocytic Tumors of the Lung

Dermatofibromas are common benign skin tumors. However, a subset of dermatofibromas have a high recurrence rate and are believed to metastasize and form lung tumors called cystic fibrohistiocytic tumors of the lung. Our goal is to study the genetic makeup of both tumors to identify markers that may be used for further clinical applications and to determine if and how dermatofibromas become lung tumors.

Research Grant

Jing Chen, Ph.D.
University of Pennsylvania
Genetic and Protein Analysis of Anti-Desmoglein Antibodies in Pemphigus Vulgaris

Pemphigus vulgaris is a potentially disfiguring and ultimately fatal autoimmune disease of the skin. In pemphigus, autoantibodies against the outermost layers of the skin cause blisters. In this project we will characterize the autoantibodies at a genetic and protein level, which will help us determine why certain therapies are effective, or not, in treating patients. Ultimately, this knowledge should lead to more effective therapies.

Qiaoli Li, Ph.D.
Thomas Jefferson University
Molecular Basis of Pityriasis Rubra Pilaris

Pityriasis rubra pilaris (PRP) is an inflammatory skin disorder of unknown etiology with no effective treatment or cure. We have assembled a patient cohort of the most common forms of PRP that lack a family history. We propose CARD14 as the candidate gene and will undertake whole exome sequencing to identify the molecular basis of sporadic PRP. The results will provide insight with treatment possibilities for this currently intractable disease.

Oxana Nekrasova, Ph.D.
Northwestern University
A Novel Desmoglein-1/Tctex-1(Dynein Light Chain) Interaction in Epidermis

Defects in the three-dimensional organization of the constantly self-renewing skin potentially contribute to skin damage and skin cancer. To better understand how skin cells coordinate their proper shape and position, we will see if the "sticky" protein desmoglein-1, which holds cells together and provides mechanical strength to skin, together with its novel binding partner Tctex-1 (a part of molecular motor), coordinate skin development and support the proper multilayer skin structure.

Kaelyn D. Sumigray, Ph.D.
Duke University
Cell and Tissue Responses to Desmosome Disruption

Pemphigus is a group of blistering diseases in which a person’s own immune system causes the skin to become very fragile. This occurs through the generation of antibodies that target structures, called desmosomes, which hold cells together in the skin. By examining how a tissue responds to the loss of desmosomes, I will uncover new therapeutic and diagnostic targets for blistering diseases.

Tamara Terzian, Ph.D.
University of Colorado, Denver
p53 in Photoprotection

They say better safe than sorry. We know that intense UV exposure can cause sunburns that damage DNA and may ultimately lead to skin cancer. We found that high levels of the tumor suppressor p53 in skin protects against the effects of sunburn. Our goal is to understand the underlying protective mechanisms and test if p53-activating drugs can protect skin from sunburn and DNA damage.
DF Mission

The Dermatology Foundation provides research support that helps develop and retain tomorrow’s teachers and researchers in dermatology, enabling advancements in patient care.

Research Awards Program

Research award applications are accepted by the Dermatology Foundation through October 15th of each year. Detailed application instructions are available on the DF website. All proposed research must be conducted under the sponsorship of a department or division of dermatology at a U.S. academic institution. Application quotas for each institution are to be monitored by the Dermatology Department Chair/Division Chief.

Each application is competitively reviewed and ranked by the Foundation’s Medical and Scientific Committee according to scientific merit and the potential to advance the specialty. This includes a diligent assessment of each candidate’s ability to become one of tomorrow’s thought leaders in dermatology.

To learn more about the Foundation’s Research Awards Program, visit dermatologyfoundation.org/rap or contact the DF staff at 847-328-2256.
To become a member, visit the DF Contribution Center at dermatologyfoundation.org.